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The validity of Weibull estimators – experimental
verification
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A sufficiently large number of bending tests of a recrystallized silicon carbide ceramic was

performed, which gave a fundamental set of strength values. From this fundamental set,

arbitrary subsets of size M were chosen by a Monte-Carlo procedure and the parameters of

the two-parametric Weibull distribution were calculated by the maximum likelihood

method. The dependence of the statistical distribution of the two parameters, obtained by

this procedure, on the size of the subset M was investigated. It was found that the variation

coefficient of the scale parameter could be well described by the equations given in the

literature, whereas the variation coefficient of the Weibull modulus was much higher. It has

been shown that the reason for this behaviour is that the distribution of flaws and therefore

the strength of the material does not perfectly obey the Weibull statistics, for which the

theoretical equations were derived. Thus, in real ceramics the numerical value for the

Weibull modulus obtained from a certain number of experiments is even more

indeterminate than described by the theoretical solution.
1. Introduction
The Weibull distribution has been widely used to
describe the statistical behaviour of the fracture of
ceramics [1]. It is based on the ‘‘weakest-link hypothe-
sis’’, which means that the most serious flaw controls
the strength. If the flaw sizes of the large pores, i.e.
those which are responsible for failure, are distributed
according to a power law, the strength values are
distributed according to the Weibull distribution [2].
Predominantly, the two-parameter Weibull distribu-
tion is used, with the scale parameter, r

0
, describing

the strength, and the Weibull modulus, m, which char-
acterizes the width of the strength distribution. These
parameters have to be determined by a limited num-
ber of experimental tests, depending on the money and
the time of the producer and the the testing institution.
As the exact values can only be determined by an
infinite number of tests, there had been considerable
interest in the precision of the determination of
the parameters by a certain, limited number of
experiments [3—9]. Another point of interest was to
investigate the dependence on different evaluation
procedures, e.g. linear regression, moments method or
maximum likelihood [3—9].

Recently, for a known Weibull modulus, m, an exact
solution was found for the dependence of standard
deviation on the number of tests, if evaluated by the
* Author to whom all correspondence should be addressed.

maximum likelihood procedure [10]. The general
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solution for unknown m was approximated by a com-
puter simulation and can be well described by multi-
plying the special solution with a constant factor close
to 1 [10]. Furthermore, it was shown that the biasing
results only from the way of adding different values
from an asymmetric distribution, hence each single
measurement is statistically correct and unbiased.
In this context, biasing shows only the degree of the
asymmetry of the distribution.

In this work, the idea of testing the statistical be-
haviour by investigating subsets of a set of numerous
bending tests of a real ceramic material was adopted
[11]. Furthermore, we calculated the statistical behav-
iour, i.e. the standard deviation and the biasing, by the
complete distribution of arbitrary subsets of dimen-
sion M of a sufficiently large fundamental set of
bending tests.

2. Experimental procedure
The material investigated was a recrystallized silicon
carbide (RSiC). This material has a high strength in
relation to its density and is nearly free of second
phases (sintering aids) except a rest of free silicon
((2 wt%). Thus the material is high creep resistant.
A high thermal conductivity and a low thermal coef-
ficient of expansion allow this material to be applied

for kiln furniture in the ceramic industry. The name
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‘‘recrystallized silicon carbide’’ is misleading, because
the material is produced by an evaporation—conden-
sation process. Small SiC grains ((5 lm), silicon pow-
der and coarse SiC grains ('50 lm) are mixed with an
organic binder, so that slip casting can be applied.
During sintering of the green bodies at 2200 °C small
particles partly evaporate and condense, filling gaps
and building up necks between the large particles. The
process has the advantage that almost no shrinkage
takes place, but it results in a (partly open) porosity
of up to 20%. Two plates of the same material but
of different charges were investigated, one for the
Weibull distribution tests with a mean density of
2.74 g cm~3 and the other for the determination of the
subcritical crack growth parameters with a mean den-
sity of 2.81 g cm~3. The distribution of pores is usually
described by a two-parameter power law, from
which the two parameters of the Weibull-distributed
strength may be derived [12].

The specimens were machined to final dimensions
of 4]5]45 mm3 and loaded in four-point-bending in
a hydraulic testing machine at a stressing rate of about
20 MPa s~1. The tensile surface was ground and the
edges were chamferred according to the European
standard EN 843-1 [13].

3. Results and discussion
To obtain the fundamental set of strength values, 137
bending tests were performed. From this fundamental
set, 105 arbitrary subsets, consisting of M single
bending strength values, were chosen by a random
procedure and the parameters of the two-parameter
Weibull distribution, the scale parameter, r

0
, and the

Weibull modulus, m, were calculated by the maximum
likelihood method. Then, the dependence of the stat-
istical behaviour, the variation coefficient and the
biasing, if the values are arithmetically added, on the
subset size, M was investigated.The Weibull para-
meters obtained by a whole set of 137 values are
henceforth called the true values, the scale parameter
being r

0
"90.73 MPa and the Weibull modulus

m"9.36. Of course, the true values for the parameters
can only be obtained in the limit mPR or MPR,
i.e. an infinite Weibull modulus or an infinite number
of experiments. However, the high number of tests will
give a quite good approximation and the effects on the
variation coefficient and the biasing by this approxi-
mation will be small. The theoretical variation coeffic-
ient of the scale parameter for this case is below 1%,
that of the Weibull modulus being about 7%. Thus,
the precision of the numerical results described below
may be estimated to be in the range of these devi-
ations.

Now, from the fundamental set, 105 arbitrary sets
consisting of a certain number, M, of single bending
strength values, were obtained. As the number of
possible combinations for a certain number M)90
from the fundamental set far exceeds 105, this can be
taken as 105 independent experiments, consisting of
M single bending tests, to determine the Weibull
parameters. Hence, in the following, the results from

this procedure will be called experimental results. The
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standard deviation, *x, of a certain variation x and
a number of N"105 experiments is given in general
by

(*x)2"S(x!xN )2T"
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and the variation coefficient is obtained by normal-
izing the standard deviation, *x/x. Of course, this
definition of the standard deviation and the variation
coefficient is symmetric. As the distribution is
asymmetric, a description by an asymmetric deviation
would be more appropriate, but in this work the
symmetric one is chosen for simplicity and for easy
comparison with the theoretical results [10]. Owing to
this theoretical work [10], the variation coefficient,
*r

0
/r

0
, of the scale parameter is given by
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with a"1.05 and ! being the Gamma function. The
one of the Weibull moduli is approximated by a power
law function,

*m

m
" 0.04222#2.3375M~0.8836 (3b)

The respective formulas for the biasing, i.e. the devi-
ation, if the single values are arithmetically added, are
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" 1#2.1049M~1.1 (4b)

Fig. 1 shows the variation coefficient of the scale
parameter, i.e. the standard deviation normalized to
the true value, *r

0
/r

0
. The circles are the variation

coefficients from the distribution of 105 experiments
described by Equations 1 and 2, the line is the theoret-
ical variation coefficient from analytical results and
computer simulations, see Equations 3 and 4. It can be
seen that the experimental variation coefficient is in
perfect agreement with the theoretical one, which is
valid for a material that would exactly obey the
Weibull theory. In Fig. 2, the biasing, i.e. the degree of
the asymmetry of the distribution, can be seen. The
circles are obtained by the arithmetic mean of 105

experimental values, the boxes by a Weibull-
motivated mean [10, 14]
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Figure 1 The variation coefficient of the scale parameter, *r
0
/r

0
, in

dependence on the number of tests M. s: Obtained by the distribu-
tion of the experimental values, line: theoretical solution for mater-
ials perfectly obeying the Weibull statistics [10].

Figure 2 The biasing of the scale parameter. s: Obtained by arith-
metically adding the single measured values (conventional mean
value), h: obtained by a Weibull motivated mean value (Equation
5), —: theoretical solution for materials perfectly obeying the

Figure 3 The vatiation coefficient of the Weibull modulus, *m/m, in
dependence on the number of tests M. s: Obtained by the distribu-
tion of the experimental values, —: theoretical solution for materials
perfectly obeying the Weibull statistics [10].

Figure 4 The biasing of the Weibull modulus. s: Obtained by
arithmetically adding the single measured values (conventional
mean value), —: theoretical solution for materials perfectly obeying
Weibull statistics [10]. the Weibull statistics [10].
and the line is the theoretical curve for the results,
which should be obtained by the arithmetic mean.
It can be seen that the addition according to the
Weibull mean leads to an overestimation, whereas the
arithmetic mean underestimates the true value.
However, for the 30 values recommended by the
European Committee for Normalization for the deter-
mination of the Weibull parameters, the variation
coefficient of the scale parameter calculated by the
Weibull-motivated mean is 0.04%, whereas in com-
parison the arithmetic mean has a variation coefficient
of 0.13% for M"30. Thus, if more than one working
group has tested a material and only the Weibull
parameters (and not the single strength values) are
known, an evaluation to obtain a more precise value

should be calculated according to Equation 5, but the
differences between both calculations are usually
small.

A completely different behaviour can be observed
for the Weibull modulus, m. Fig. 3 shows the variation
coefficient, where the results from the experiments
(represented by the circles) show significantly higher
values than that obtained by the theoretical curve. The
same behaviour can be seen for the biasing, i.e. the
experimental values are much higher than the theoret-
ical ones. The reason being that the theoretical equa-
tions were obtained from a material which perfectly
obeys the Weibull theory and thus represent a lower
limit for the determination of the Weibull parameters.
To prove this assumption, a set of 137 random
strength values lying exactly on the Weibull fit were

randomly chosen and the procedure as mentioned
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above was applied, i.e. subsets of a certain size, M, were
arbitrarily chosen and their variation coefficient and
the biasing were calculated. Then the numerical values
exactly follow the theoretical curves, which confirms
the assumption that the higher variation coefficient
originates from the deviations from the Weibull fit.

However, real materials may not perfectly obey the
Weibull distribution. In Fig. 5 the Weibull diagram is
depicted, where it can be seen that deviations from the
straight line exist, which is the fit from the maximum
likelihood function. The circle are (x, y)-pairs with
x"lnr

"
being the logarithm of the bending strength

and y"ln ln 1/(1!P
&
)

P
&
"

n! 0.5

M
n"12M (6)

which is a frequently used expression for the fracture
probability, P

&
. The fracture probabilities have to be

chosen for a graphical representation or an evaluation
by linear regression. They are not required for an
evaluation by maximum likelihood method, because
they are not arbitrary in this case. From Fig. 5 it is
clearly visible that for real ceramics, deviations may
exist from the straight line, the Weibull fit. These
deviations result in a higher variation coefficient of the
Weibull modulus in comparison with the theoretical
solutions, whereas the scale parameter is much less
affected. This may contribute to the fact that on the
one hand the scale parameter has a standard deviation
much less than the Weibull modulus, and on the other
hand it characterizes a ‘‘mean’’ strength, which is less
sensitive than the modulus, which characterizes the
uniformity of the flaw distribution and thus the distri-
bution of strength values.

There are numerous possibilities for these devi-
ations, for example, intrinsic differences from different
distributions of the defects depending on their size,
edge effects or transition from volume to surface flaws.
In a recent work [15], deviations were attributed to
the R-curve behaviour and the extension of a crack.
For our material, RSiC, this can be excluded: in Fig. 6
tests at different stressing rates are shown, from which
the subcritical crack extension can be calculated [16].
The circles are the mean of ten bending tests at each
loading rate and are nearly at the same level, showing
that there exists no considerable subcritical crack ex-
tension for this material. The numerical values of the
bending strength tests for the subcritical crack exten-
sion are higher than that for the Weibull distribution,
because these specimens had a higher mean density.
But as all strength values at different loading rates are
at the same level, R-curve behaviour may be excluded.
We doubt, furthermore, the explanation by R-curves
for the deviations for two reasons: firstly, the experi-
ments reported by Duan et al. [15] lasted only about
0.1 s, and due to this, very high loading rate crack
extension should be rather improbable. Secondly, the
R-curve was obtained from the crack extension of
compact tension (CT) specimens in a range up to
6 mm. As R-curve behaviour characterizes the fracture
behaviour of long cracks [17] and the crack extension

in bending tests leading to fracture is estimated to be
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Figure 5 Weibull diagram for the whole sample of 137 measured
values (s), showing that the material not perfectly obeys Weibull’s
law (—).

Figure 6 The tests at different loading rates show that there exists
no subcritical crack extension for this material, as all values are at
the same level.

two orders of magnitude less than in the CT tests
(taking the given K

I#
-value into account), we assume

that the R-curve behaviour is much less pronounced.
For bending tests, all fractures occur just at the very
beginning of the R-curve.

Therefore, we suggest that different intrinsic distri-
butions of the pores are responsible for the deviation.
This is, furthermore, confirmed by pore-size measure-
ments for specimens with different strengths. Fig. 7
shows, as an example, the cumulative probability of
the size of 1500 pores, measured by optical micro-
scopy, by using the following rank statistics [18]

F (a
i
) "

i
+
j/0

N
j
!0.5

,
+ N

(7)
n/0
n



Figure 7 Cumulative probability of the size of 1500 pores for
specimens with different porosities, showing that there are intrinsic
differences in the pore size distribution. n: porosity 20.1%, h:
17.3%, s: 16.7%.

with a
i
the maximum pore length in the range i and

N the number of pores in a particular size group.
Results are shown from a plane section measurement
of specimens with a porosity of 20.1%, (triangles), of
17.3% (boxes) and of 16.7% (circles). Thus the distri-
bution of pores may depend on the actual porosity
and may vary from specimen to specimen. As this has
effects on the distribution of the largest pores, i.e. those
responsible for fracture, these differences may also be
responsible for the deviations from the Weibull statis-
tics. To cope with this, Chao and Shetty [18] used
a four-parameter fit for the cumulative distribution
function and obtained a better prediction of the meas-
ured fracture strength distribution for silicon nitride.

Hence it may be concluded that the pore-size distri-
bution does not follow a power law with two constant
parameters. The differences may, of course, be very
pronounced for the material RSiC because of its high
porosity. We assume that for materials with very small
defects in comparison to the specimen’s dimensions
the deviations from the Weibull fit might be consider-
ably smaller. Henceforth, the influence of different
pore-size distributions should not be neglected, but
considered as a possible additional uncertainty in de-
termining the Weibull modulus.

4. Conclusions
105 subsets of a certain size 10)M)90 were chosen
from a fundamental set of 137 bending strength values
and the Weibull parameters were evaluated according
to the maximum likelihood method. This corresponds
to 105 independent experimental test sets, from which
the statistical behaviour of the variation coefficient
and the biasing (deviation from the true value, if arith-
metically added) could be investigated. The following
conclusions may be drawn.

1. The variation coefficient and the biasing of the
scale parameter may be described by the theoretical

solution, which are the lower limits and valid for
a material perfectly obeying the Weibull statistics, i.e.
pore-size distribution according to a power law and
thus strength distribution according to the Weibull
statistics.

2. The variation coefficient of the Weibull modulus
may be significantly higher than the lower limit de-
scribed by the theoretical solution, depending on
the degree to which the strength distribution of the
material deviates from the statistics described by
the Weibull theory.

3. The deviations from the Weibull theory are re-
sponsible for the difference from the theoretical solu-
tions, as the same procedure as mentioned above,
performed with 137 values lying perfectly on the
Weibull fit, follows exactly the numerical values of the
theoretical solutions.

4. These deviations from the Weibull theory are
attributed to intrinsic properties such as different pore
distributions, whereas R-curve behaviour cannot play
any role, because the material tested is resistant to
subcritical crack extension.
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